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Statement of Purpose

My goal is to introduce you to a spectrum of approaches used to model

the transition region, make you aware of the challenges in such a task, and

provide some tools to help you make decisions as to the most appropriate

way to address your individual problems.

Opinions of the Experts

We will initiate the learning process with a quick look at how various experts

of transition and turbulence modeling responded to my requests for their
personal ideas about the future of transition-region modeling. I have edited
their responses (as indicated by the [...]'s ) only to the extent necessary
to preserve anonymity and clarify acronyms. I hope that these notes will
provide you with the knowledge to intelligently evaluate these opinions and

to con�dently reach your own conclusions.
\For the next couple of years I see that k � � models [...] will be used

for practical calculations. Perhaps slowly Reynolds stress models will take
over, but very little has so far been done with these in the area of transition
modeling. I believe that the future belongs to large-eddy simulations, and

I expect that in 5 to 10 years' time transition calculations will be done by
such simulations also for practical purposes."

\For engineering prediction procedures in the gas-turbine industry (i.e.,
for 
ows with high free-stream turbulence intensity) I recommend to put
more e�orts into second-moment closure (Reynolds stress modeling). For

aerodynamic applications (i.e., low free-stream turbulence intensities) I am

afraid one is left with even more empirical transition correlations."
\I would expect Reynolds stress approaches to be the simplest level that

can usefully tackle transition on aircraft in subsonic or hypersonic 
ows

(though current schemes are almost certainly inadequate for the latter task).

They will need some help in getting started { possibly some kind of library

built up from separate DNS [direct numerical simulation] studies. On gas-

turbine blades, two-equation schemes may su�ce, particularly if one makes
use of the available strain and vorticity invariants to render the scheme

more appropriately sensitive to curvature and irrotational deformations of
the mean velocity �eld."
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\Low-Re RST [Reynolds stress transport] modeling will be vital for real

predictions of transition { possibly linked to intermittency or other treat-

ments for Tu < 1% { at least at subsonic conditions in both external and

internal environments. Simpler models (i.e., k � �) with additional re�ne-

ments may be needed for unstructured Navier-Stokes solutions with adap-

tive meshes for complex geometries. Yet simpler derivative models { perhaps

based on Johnson and King{type nonequilibrium approaches and Grund-

mann et al. ideas may be the limit for real (hypersonic) aircraft computa-

tions."
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Chapter 1

Introduction

The calculation of engineering 
ows undergoing laminar-turbulent transition
presents special problems. Mean-
ow quantities obey neither the fully lam-
inar nor the fully turbulent correlations. In addition, local maxima in skin

friction, wall temperature, and heat transfer often occur near the end of the
transition region. Traditionally, modeling this region has been important for
the design of turbine blades, where the transition region is long in relation to
the chord length of the blade. More recently, the need for better transition-
region models has been recognized by designers of hypersonic vehicles where

the high Mach number, the low Reynolds number, and the low-disturbance

ight environment emphasize the importance of the transition region. Need-
less to say, a model that might work well for the transitional 
ows typically
found in gas turbines will not necessarily work well for the external surface
of a hypersonic vehicle. In Chapter 2, some of the important 
ow features

that control the transition region will be discussed. In Chapter 3, di�er-

ent approaches to the modeling problem will be summarized and cataloged.
Fully turbulent 
ow models will be discussed in detail in Chapter 4; models
speci�cally designed for transitional 
ow, in Chapter 5; and the evaluation

of models, in Chapter 6. Finally, in Chapter 7, the major points will be sum-

marized and then I will take the opportunity to express my own opinions.
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Nomenclature

A length scale used in near-wall exponential damping

A� constant for damping turbulent transport length scale

A+ normalized length scale used in near-wall exponential damping

a = �u0v0=(2k), structure coe�cient

aij = (u0iu
0

j � 2=3�ijk)=k, anisotropic part of Reynolds stress tensor

a1 coe�cient used in setting initial dissipation-rate pro�le

B1; B2 empirical parameters

Cf = �dU
dy
jw=(12�U2), skin-friction coe�cient

Cijk turbulent-stress di�usion correlation

cl length-scale coe�cient

cp speci�c heat at constant pressure

cs di�usion coe�cient for turbulent stress

c�; c�1; c�2 parameters used in modeling of dissipation

c�; c�1; c�2 parameters used in modeling of dissipation

c� coe�cient in eddy viscosity

c1 coe�cient in production term in dissipation-rate equation

c2 coe�cient in destruction term in dissipation-rate equation
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c1; c2; c
w
1 ; c

w
2 parameters used in modeling of �ij

D material derivative

D� turbulent di�usion of �

E empirical source term used in the equation for �

F fudge factor used to make a tensor contract correctly

fs low Reynolds number damping function

f� low Reynolds number damping function of dissipation

f� low Reynolds number damping function in eddy viscosity

f1 low Reynolds number function in production term in dissipation-rate
equation

f2 low Reynolds number function in destruction term in dissipation-rate

equation

gi body force

G �lter function for large-eddy simulation

h speci�c enthalpy

k = 1
2
u0iu

0

i; turbulent kinetic energy per unit mass

kth thermal conductivity

L length of transition region

Lt2 = dUe
dx
�2lam=�; pressure-gradient parameter at xt2
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Lij smallest resolved stresses in large-eddy simulation

l� turbulent dissipation length scale

l� turbulent transport length scale

l0, l1, l2 length scales for zero-equation, one-equation,

and two-equation models

M Mach number

Mij subgrid-scale model for anisotropic part of Tij

mij subgrid-scale model for anisotropic part of �ij

N exponent in eN transition-prediction method

N0 nominal nondimensional spot-formation rate

N2 adjusted nondimensional spot-formation rate

nj wall-normal component of unit vector in j direction

Pk production of turbulent kinetic energy

Pij stress production rate tensor

P� production of turbulent dissipation

p pressure

p0 
uctuating pressure

p0T 
uctuating total pressure

p+ = ��eUe
dUe
dx
=(�eu

3
�), nondimensional pressure gradient
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q = 1
2
�U2, dynamic pressure

_q heat 
ux

RT = k2=(��), turbulent Reynolds number

Rk, Rw, R� constants in low Reynolds number version of k � ! model

Ry = yk1=2=�, turbulent Reynolds number based on y

Re Reynolds number based on streamwise distance

ReL Reynolds number based on length scale L

ReT0 Reynolds number at end of transition

Ret0 Reynolds number at start of transition

Rexs Reynolds number based on x location of the start of transition

Re� Reynolds number based on momentum thickness

Re�s Reynolds number based on momentum thickness at the start of transition

Re1 unit Reynolds number

r = (Taw � Te)=(TT � Te), recovery factor

S =
q
2SijSij

Sij = 1
2
( @ui
@xj

+
@uj
@xi

), strain rate

St = _q= [�cp(Tw � Te)], Stanton number

T temperature
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TT total temperature

Tij subgrid-scale stress on test �lter

Tu =
q
u0iu

0

i=3=Ue � 100, turbulence intensity (in percent)

t time

U mean streamwise velocity

ui velocity in the ith direction

u� =
q
�dU
dy
jw=�, friction velocity

u0 velocity 
uctuation in the streamwise direction

u0i velocity 
uctuation in the ith direction

v0 velocity 
uctuation in the wall-normal direction

x coordinate vector

xT0 streamwise position at end of transition

xi coordinate in the ith direction

xt0 streamwise position at start of transition

y = x2, wall-normal coordinate

y+ = yu�=�, wall-normal coordinate normalized by viscous scales

� angle of pitch

�;�� functions used in k � ! model
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� angle of yaw

�; �� functions used in k � ! model


 turbulent intermittency


t transition function

� �lter width associated with subgrid-scale models

�ij = 1 if i = j, 0 otherwise

�� displacement thickness

� turbulent energy-dissipation rate

~� modi�ed dissipation rate

�ij dissipation-rate tensor

� momentum thickness

� von Karman constant (� 0:41)

� distance between points where 
 = 0:25 and 
 = 0:75

�� = dUe
dx
�2=�, pressure-gradient parameter

� dynamic-viscosity coe�cient

�e� e�ective dynamic-viscosity coe�cient

�t turbulent dynamic-viscosity coe�cient

� = �=�, kinematic-viscosity coe�cient
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�t = �t=�, turbulent kinematic-viscosity coe�cient

�ij pressure-strain correlation tensor

�ij1;�ij2;�
w
ij1;�

w
ij2 parts of the modeled pressure-strain correlation

� density

�k Prandtl number for di�usion of k

�� Prandtl number for di�usion of �

�! Prandtl number for di�usion of !

� = 1=!, turbulent time scale

�ij = uiuj � �ui�uj, subgrid-scale stress

�1 correlating parameter for ONERA/CERT transition model

� viscous-dissipation function

�� turbulent destruction of dissipation in � equation

! = �=(��k), a turbulence quantity proportional to the dissipation rate
per unit kinetic energy

()0 deviation from Reynolds average

()00 deviation from mass-weighted average

e() mass-averaged quantity or LES test-�ltered quantity

() Reynolds-averaged quantity or LES grid-�ltered quantity
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Subscripts:

aw adiabatic wall quantity

D a damped quantity, usually because of wall proximity

e boundary-layer edge quantity

i, j, k, l, m tensor indices (summation over repeated indices is implied)

lam a laminar-
ow quantity

max maximum

sgs subgrid-scale quantity

T total

t turbulent

t0 value at start of turbulent boundary layer

t2 value at point of \subtransition"

w wall quantity

1 free-stream quantity (upstream of shock if applicable)

Acronyms:

ERCOFTAC Europeon Research Community on Flow Turbulence and Combustion

DNS direct numerical simulation

LES large-eddy simulation
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RANS Reynolds-averaged Navier-Stokes

RST Reynolds stress transport

RNG renormalization group

SGS subgrid scale

SIG special interest group

TS Tollmien-Schlichting
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Chapter 2

The Domain of

Dependence{Flow Features

That A�ect Transition

The location and length of the transition region is sensitive to a number
of di�erent 
ow features. Although the following summary is by no means

complete, it describes the sort of phenomena that may require consideration
in modeling the transition region.

2.1 Pressure Gradients

Adverse and favorable pressure gradients a�ect both the onset of transition
and the length of the transition region. Large, favorable pressure gradients
may even relaminarize an already turbulent 
ow [1]. Favorable pressure gra-

dients in a laminar 
ow lead to a delayed onset of transition and a more

extensive transition region (see [2]). The results of linear stability theory can

explain the delayed onset; Narasimha, Subramanian, and Badri Narayanan

[3] suggest that these results can also explain the greater extent of the tran-
sition zone. Transition in attached boundary layers with adverse pressure

gradients starts earlier, extends for a shorter distance, and is more two di-
mensional than transition in zero-pressure-gradient 
ows [4]. The formation

of a laminar separation bubble in the 
ow raises the possibility of a free-shear
layer instability that leads to transition.
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2.2 Compressibility

Compressibility e�ects are important in several ways. The Mach number

in
uences the mean 
ow of a boundary layer and the nature of the stabil-

ity equations. At Mach numbers greater than approximately 2, an inviscid

instability can have a signi�cant e�ect during transition. This instability

has its critical layer far from the wall; hence, the typical sequence of events

observed for incompressible 
ows may not occur. In addition, as the 
uctua-

tion Mach number increases above 0:3, the resulting turbulence [5] becomes

signi�cantly di�erent from that of the subsonic case.

2.3 Free-Stream Disturbances

Free-stream turbulence (vorticity), entropy (temperature), and acoustic (pres-
sure) disturbances are present in all 
ows to varying extents. In subsonic

wind tunnels with turbulence generating grids, most of the disturbance is
vortical (i.e., turbulent) in nature. In quiet subsonic (Tu < 0:1%) and in
transonic and supersonic wind tunnels, most of the free-stream disturbances
are acoustic [6]. The type of free-stream disturbances in practical applica-
tions is likely to be quite dependent on the particular application. Bushnell

[7] notes that subsonic powered aircraft are highly susceptible to acoustic
disturbances radiated from the engine and airframe, while particulates can
be a source of vortical disturbances at altitudes up to 24 km. The turbine
blades in a gas-turbine engine probably experience free-stream disturbances
of all three types.

2.4 Surface Roughness

All surfaces have some degree of roughness. Joints and fasteners act as

large, discrete roughness elements, while multiple scratches, insect debris,

and material inhomogeneities all contribute to distributed roughness. The

e�ects of the surface imperfections can vary dramatically [8] depending upon

the characteristics of the roughness and the boundary layer at the location
of the roughness. Large roughness elements can be a source of turbulence via
a bypass mechanism. The bypass can occur right at the roughness element
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or further downstream. The roughness can also act to enhance the primary

instabilities or as a source of receptivity for these disturbances.

2.5 Streamline Curvature

The G�ortler instability that develops in regions of concave wall curvature

is fundamentally di�erent from the usual viscous instabilities that initiate

transition on 
at plates [9]. Instead of streamwise traveling waves, the G�ortler

instability manifests itself as pairs of counterrotating vortices. These vortices
distort the time-averaged, streamwise-velocity pro�le long before the 
ow can
be considered turbulent. Important di�erences in the physics of the transition
process are possible in this case.

2.6 Three-Dimensional Mean Flows

Three-dimensional boundary layers are subject to inviscid cross
ow instabil-

ities that result in both stationary and traveling vortices in the 
ow. These
instabilities are generally important near the leading edges of swept wings
and on bodies of revolution at angles of attack [10]. As with the G�ortler vor-
tices, the stationary vortices that are excited by the cross
ow instability can
lead to signi�cant distortion of the time-averaged 
ow quantities upstream
of where the 
ow would be considered turbulent.

2.7 Unsteady Mean Flows

Flows on compressor and turbine blades are subject to the periodic impinge-

ment of turbulent wakes shed from the upstream blade row. This impinge-

ment causes a turbulent \strip" to form across the span of the blade [1]. This
strip of turbulence propagates downstream along the blade at a velocity less

than that of the wake. Regions of wake-induced transition typically are sepa-
rated by a region in which a nominally steady, normal transition takes place.

Hence, multiple modes of transition can be present simultaneously on the

same surface.
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2.8 Surface Heating and Cooling

The e�ects of surface heating and cooling on laminar-turbulent transition

are varied. For subsonic 
ows, the e�ects of heating and cooling are a con-

sequence of the temperature dependence of viscosity and of the e�ect of

viscosity on the mean 
ow pro�le [11]. Uniform heating in water boundary

layers tends to stabilize the 
ow by decreasing the viscosity near the wall;

in air, uniform heating tends to destabilize the 
ow. However, Masad and

Nayfeh [12] show that a heating strip placed somewhat upstream of Branch I

of the neutral stability curve can actually help stabilize an air boundary layer,

presumably because the boundary layer that is downstream of the heating
strip \sees" a relatively cooler wall.

The heating and cooling phenomena are further complicated for super-
sonic 
ow. In supersonic 
ow, cold walls (the typical situation for a reentry
vehicle) generally stabilize the �rst instability mode (the mode that contin-
ues analytically from the most unstable subsonic mode). However, at Mach

numbers somewhat greater than 2, cold walls destabilize the higher modes
(Mack modes [13]). Preliminary results (Masad, personal communication)
indicate that the heating strips that are upstream of the Branch I neutral
curves produce trends that are similar to those obtained with global cooling
for the respective modes.

For gas-turbine applications, the wall heating and cooling issue is prob-
ably of secondary importance. Experiments with high levels of free-stream
turbulence (Tu > 1:6%) in a subsonic 
ow indicate that wall cooling a�ects
neither the location nor the length of transition [14].

2.9 Mass Injection or Suction

Mass injection is common on turbine blades, providing a protective blanket of
relatively cool air around the blade. Fluid is typically injected near the nose
of the blade, where strong, favorable pressure gradients are present. Mayle

[1] reports that under these conditions, neither a laminar boundary layer

nor a truly turbulent boundary layer exists, except perhaps much further
downstream. In the presence of strong, favorable pressure gradients, the

locally excited turbulent regions near the injection slots can relaminarize
and undergo a normal transition further downstream.
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The reverse process of wall suction is being used to help stabilize boundary

layers in quiet 
ows and hence delay the onset of transition [15]. Optimization

often involves the use of wall suction near Branch I of the neutral stability

curve [12, 16, 17]. Suction typically is not applied in the transition region,

so information is available only on the the onset of transition.

2.10 Separated Flows

Separated 
ows occur in adverse pressure gradients where the momentum of
the 
uid in the boundary layer is insu�cient to overcome the pressure gra-
dient. Boundary-layer separation is more common for laminar 
ows (which
do not easily transport momentum across the boundary layer) than for tur-

bulent 
ows (which do transport large amounts of momentum across the
boundary layer). Typically, a region of laminar separated 
ow will undergo
transition as a free-shear layer and then reattach as a turbulent 
ow. The
length of the separation region can be either short or long; the short bubbles
have only a local e�ect on 
ow, while the long bubbles interact extensively

with the exterior 
ow and signi�cantly modify the pressure distribution on
the surface. Short bubbles may burst into long bubbles and possibly result
in stall [1]. The limited data indicate that the transition lengths of both the
long and short bubbles are essentially the same, with the di�erence in the
bubble length mainly due to the length of the unstable laminar shear layer

[1]. Some experts have theorized that the long bubbles undergo a primary
instability while the short bubbles experience a bypass transition.
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Chapter 3

Model Classi�cations

3.1 General

Models for transitional 
ows can be categorized in a variety of ways (e.g., by
the numerical technique, by the type of turbulence model, or by the kind of
transitional 
ow modi�cations). Because the success or failure of any model
for the transitional 
ow regime is strongly coupled to the scheme used to
calculate the incipient turbulent 
ow, a classi�cation matrix can help dis-

tinguish between aspects of the model that are related to the turbulent 
ow
calculation method and those aspects that are speci�c to the transition re-
gion. In table 3.1, approaches for calculating turbulent 
ows are listed in
the left column. For direct numerical simulation (DNS), all relevant scales
of motion are numerically resolved; the only modeling involved is that asso-

ciated with the derivation of the Navier-Stokes equations and the boundary
conditions used. In large-eddy simulation (LES), the large scales of motion

are computed and the small scales are modeled. Four types of transport-

equation models are listed, followed by integral methods. The higher order
turbulence models appear near the top of the matrix; the lower order models

are near the bottom. The other columns indicate the type of transition-
region model as classi�ed by Dey and Narasimha [18]. An x in the column

indicates that a particular category of transition-region model is compatible
with the corresponding turbulence model.

In the remainder of this section, the general features of each class of

turbulence and transition-region model will be discussed. Later sections will
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Linear combination Algebraic Di�erential

Direct numerical simulation x x

Large-eddy simulation x x x

Reynolds stress transport x x x
Two-equation transport x x x

One-equation transport x x x

Zero-equation transport x x
Integral methods x

Table 3.1: Possible combinations of turbulence models (rows) with transition-
region models (columns).

include more detail.

3.2 Turbulence Models

3.2.1 Direct Numerical Simulation and Large-Eddy

Simulation

Both the DNS and LES approaches require enormous amounts of computing
resources, so these approaches are usually used on a supercomputer. The
DNS approach, which involves no explicit turbulence modeling, is entirely
a research tool that enables scientists to better understand various aspects

of the physics of turbulence and can be used to guide the development of
turbulence models. In LES, the small scales of turbulence, which are assumed
to be more universal in nature, are modeled; the large, energy-containing

scales that are more 
ow speci�c are explicitly calculated. The models used
for the small scales are called subgrid-scale (SGS) models. Unlike other

types of turbulence models discussed below, the resultant equations for LES
describe a fully time-dependent 
ow; the modeling only blurs the turbulent

structures so that the small scales do not need to be calculated. A potential
exists for the practical use of LES in the near future, although the high cost

will restrict its use to cases where lower order models are not expected to

give satisfactory results.
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3.2.2 Statistical Turbulence Models

Presently, statistical turbulence models are the most widely used turbulence-

modeling schemes. Flow quantities are decomposed into mean and 
uctu-

ating parts and then substituted into the equations of motion. These equa-

tions are averaged to produce a set of equations for the mean motion. Os-

borne Reynolds pioneered this approach [19] by temporally averaging the

equations for incompressible 
ow; the resultant equations are known as the

Reynolds-averaged Navier-Stokes (RANS) equations. These equations in-

volve the mean 
ow quantities as well as correlations of the 
uctuating quan-
tities. The correlations appear in the equations of mean motion in the same
way as the viscous stress terms appear; hence, these correlations are known
as the Reynolds stresses. The various classes of models di�er in how these

correlations are approximated.
Reynolds stress transport (RST) models involve transport equations for

each of the six independent Reynolds stress components. This class of models
is the most complex of the statistical turbulence models, and the use of
these models for engineering applications is not yet commonplace. However,

because the Reynolds stresses can independently respond to various 
ow
conditions, this class of models can potentially be applied to a large variety
of 
ows. This potential generality motivates much of the current research on
these models.

Eddy-viscosity models include a number of classes of models, all of which

approximate the e�ect of the turbulence on the mean motion by modifying
the coe�cient of viscosity. The e�ective viscosity coe�cient that is used in
the computation of the 
ow �eld is the sum of the molecular viscosity �

and the turbulent viscosity �t. The di�erent classes of eddy-viscosity mod-

els are distinguished by the number of additional di�erential equations that

are solved to determine �t. Dimensional analysis suggests that �t is the
product of the density, a velocity scale, and a length scale. The local mean

density is almost always used, leaving the velocity and length scale still to
be determined. Two-equation models solve di�erential equations to deter-

mine these two scales. One-equation models solve a di�erential equation for
the velocity scale and use algebraic relations to determine the length scale.

Zero-equation models use algebraic relations to determine both the velocity
and length scales. More detail on all of these model classes will be given in

Chapter 4.
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3.2.3 Integral Methods

In integral methods, an ordinary di�erential equation is solved for the mo-

mentum thickness � in terms of the skin-friction coe�cient Cf , the displace-

ment thickness ��, the boundary-layer edge velocity, and body curvature.

For 
ows with heat transfer, another equation is required that involves the

Stanton number St, the enthalpy thickness, the free-stream and wall tem-

peratures, and the body geometry. Approximate relationships between the

variables are substituted into the equations. The equations are integrated

in the downstream direction. These methods are computationally quite e�-
cient, but are accurate only for those 
ows in which the assumed relationships
are appropriate. Of the 20 integral methods that competed in the 1968 Stan-
ford Conference [20, 21], only four received an evaluation of \good" after they

were tested for 16 di�erent turbulent 
ows. In spite of their limited general-
ity, integral methods provide good skin-friction and heat-transfer predictions
for well-studied 
ows of engineering interest. See White [22] for more details.

3.3 Transition-Region Models

3.3.1 Linear-Combination Models

Linear-combination models are based on the assumption that the transi-
tional 
ow is composed of intermittent spots of turbulence in an otherwise
fully laminar 
ow. Under this assumption, the time-averaged 
ow �eld is a
linear combination of the laminar 
ow and a fully turbulent 
ow that origi-

nates where transition starts. The relative amounts of laminar and turbulent

ow in the linear combination are governed by the intermittency 
, which is

de�ned as the fraction of time that the 
ow is turbulent. The most di�cult

aspect of this approach is the determination of an appropriate distribution for
the intermittency. An important feature of this type of model is that it can

be coupled with any method of calculating the laminar and turbulent 
ows.
The basic assumption of the model (i.e., the coexistence of fully laminar and

fully turbulent states) has been questioned by some investigators who claim
that the transition region, at least in some 
ows, is more complicated than

a simple mixture of laminar and turbulent 
ows.
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3.3.2 Algebraic Models

Algebraic models are designed to be incorporated into turbulence models

that use an eddy-viscosity assumption. They involve a modi�cation of the

e�ective viscosity so that

�e� = �+ 
t�t (3:1)

where 
t is a transition function equal to zero before the start of transition

and equal to 1 at the conclusion of transition. Di�erent models use various

functions to represent 
t. Some models have 
t approximate the 
ow inter-

mittency 
 (see [23]); in other models [24] 
t is greater than 1 in parts of the
transition region and so cannot represent the true intermittency. The use
of algebraic models is convenient because these models involve very minor
modi�cations to existing eddy-viscosity models.

3.3.3 Di�erential Models

Di�erential models address the issue of transition in the fundamental di�er-
ential equations. The transition phenomena are often addressed simultane-

ously with other low Reynolds number modi�cations used in many of the
turbulence models that use transport equations.
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Chapter 4

Fully Turbulent Flow Models

In this chapter models for fully turbulent 
ow will be discussed. The particu-
lar models have been chosen because either they clearly illustrate important
points about a group of models or they have been incorporated into a tran-

sitional 
ow model that is discussed in the next chapter.
Standard Cartesian tensorial notation is used; repeated indices imply a

summation. Tensor indices are restricted to the letters i, j, k, l, and m. All
other subscripts clarify variable meanings. Where speci�c variable directions
are needed, the subscript 1 indicates the streamwise direction; the subscript

2, the wall-normal direction; and the subscript 3, the spanwise direction.

4.1 Basic Equations

For a Newtonian 
uid, when the Stokes hypothesis is assumed, the Navier-
Stokes equations can be written

@(�ui)

@t
+
@(�uiuj)

@xj
= �gi � @p
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+

@

@xj

"
�
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(4:1)

subject to conservation of mass

D�

Dt
+ �

@uk

@xk
= 0 (4:2)

and conservation of energy
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Dp

Dt
+

@
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@xk

!
+ � (4:3)

25



where ui is the velocity; p is the pressure; gi is a body force; � is the coe�cient

of viscosity; �ij is the Kroneker-delta; h is the speci�c enthalpy; kth is the ther-

mal conductivity; and � = (@ui=@xj)� [@ui=@xj + @uj=@xi � 2=3 (�ij@ul=@xl)]

is the viscous dissipation function. For the remainder of this work, the body

force will be neglected, although it could be retained if it were important in

a particular application.

There are two common ways to decompose the 
ow variables, depending

upon whether the 
ow must be treated as compressible. For incompressible


ow, the standard Reynolds decomposition is

f � �f + f 0 (4:4)

where f is the 
ow quantity, �f is the average, and f 0 is the 
uctuation.
The average can be either a temporal average or an ensemble average. With
Reynolds averaging, the average of a 
uctuating quantity is zero; hence,

f 0 = 0 (4:5)

The other common way to decompose the 
ow �eld is through the use of
mass-weighted averages such that

f � ~f + f 00 (4:6)

where

~f � �f

��
(4:7)

Note that

�f 00 = 0 (4:8)

but that
f 00 6= 0 (4:9)

To keep the presentation of the modeling concepts unencumbered by al-

gebraic messiness, unless speci�cally stated otherwise, the models will be

discussed in their incompressible, isenthalpic form. Hence, the Reynolds-
averaged equations can be written as

@�uk

@xk
= 0 (4:10)
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The Reynolds stress is easily identi�ed as ��u0iu0j. Especially with an in-

compressible 
ow, mass-speci�c quantities are commonly used; hence, the

term \Reynolds stress tensor" is often used to refer to the velocity correla-

tion �u0iu0j. This convention is used in this report so that, for incompressible


ow, the turbulent kinetic energy is de�ned as

k � 1

2
u0iu

0

i (4:12)

and the true dissipation rate of k is

�
@u0i
@xj

 
@u0i
@xj

+
@u0j

@xi

!
(4:13)

The symbol � is often de�ned as

� � �
@u0i
@xj

@u0i
@xj

(4:14)

and the additional term associated with the dissipation rate �(@u0i=@xj)
�
@u0j=@xi

�
is combined with viscous work terms in the kinetic energy equation to form
the kinetic energy di�usion term � (@2k=@xi@xi), as is done here. Although
� is commonly called the turbulent dissipation, Hinze [25] points out that

this is the true dissipation only in homogeneous turbulence. For compress-

ible 
ows, the dissipation is considerably more complicated. The additional
complexity will not be addressed in this paper.

With the above background information, some simple turbulence models

will be examined.

4.2 Eddy-Viscosity Turbulence Models

In eddy-viscosity models, the Reynolds stress tensor is approximated as

� u0iu
0

j = 2
�t

�
�Sij � 2

3
k�ij (4:15)
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where

�Sij =
1

2
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+
@�uj
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(4:16)

is the mean-
ow strain rate and the last term on the right is needed for

consistency with the de�nition of k.

4.2.1 Algebraic or Zero-Equation Models

In zero-equation turbulence models, an algebraic relation is used to deter-

mine the eddy viscosity. A mixing-length hypothesis suggests that the eddy
viscosity take a form like:

�t

��
= �t = l20

�
�Sij �Sij

� 1

2 (4:17)

where l0 is a length scale obtained from an algebraic formula. The length
scale represents the distance traveled by a hypothetical lump of 
uid before

that lump transfers its momentum to another lump of 
uid. This level of
modeling implies that the mean motion is una�ected by the turbulence in-
tensity k. Two common zero-equation models are the models of Cebeci and
Smith [26] and Baldwin and Lomax [27]. The Cebeci-Smith model gener-
ally works well in subsonic, equilibrium turbulent boundary layers. Many

modi�cations to the model have extended the useful range of the model to a
large variety of 
ows. The Baldwin-Lomax model was speci�cally designed
to handle transonic and supersonic separated 
ows over airfoils. Both are
two-layer models. In the Baldwin-Lomax model, the mean vorticity magni-
tude is used instead of the mean strain rate, although for two-dimensional

boundary layers this substitution makes little di�erence. Major di�erences

between the models exist in their treatments of the outer layer. As an ex-
ample of a zero-equation model, consider the variation of the Cebeci-Smith
model described in [28]. In the inner layer,

l0 = �y

�
1� exp(� y

A
)

�
(4:18)

where � is the von Karman constant (� 0:41), y is the vertical distance from

the surface, and A is a damping coe�cient such that

A =
A+�

�u� (1 � 11:8p+)
1

2

(4:19)
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The friction velocity is u� , and

p+ = � �eUe

(�eu3� )

dUe

dx
(4:20)

is a nondimensional pressure-gradient parameter. The subscript e denotes

a quantity evaluated at the boundary-layer edge. The mixing length l0 is

proportional to the distance from the wall. Close to the wall, the forces of

molecular viscosity and the impermeability of the wall signi�cantly reduce the

turbulent shear stress and, through equations (4.15) and (4.17), the mixing

length. The near-wall damping of the length scale is an important feature
of many models; the complicated forms taken by some damping functions

indicate e�orts by modelers to account for various e�ects. Here, in addition
to a van Driest damping, adjustments have been made to account for mean-

ow pressure gradients. In the outer region of the boundary layer �t is given
by

�t = 0:0168 ��


����Z 1

0
(Ue � U)dy

���� (4:21)

when the momentum-thickness Reynolds number Re� is greater than 5000.

The quantity �
 is an edge intermittency factor that smoothly reduces the
eddy viscosity to zero outside the boundary layer. An Re�-dependent cor-
rection to the value of 0:0168 is applied when Re� < 5000. The switch from
inner to outer expression for eddy viscosity occurs at the smallest value of y
at which the two expressions are equal. A typical distribution for the eddy
viscosity, normalized by the molecular viscosity, is illustrated in �gure 1.

Note the discontinuous slope where the inner and outer models match.

4.2.2 One-Equation Models

In a one-equation model, a transport equation is solved for the turbulent
kinetic energy. The velocity scale in the eddy viscosity is the square root of
the turbulent kinetic energy, so

�t = ���t = c���k
1

2 l1 (4:22)

where l1 comes from an algebraic formula. For incompressible 
ow, the exact
transport equation for k is
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Unfortunately, some terms on the right side of equation (4.23) are not known

and must be modeled. The turbulent transport is modeled by a gradient-

di�usion hypothesis such that
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The dissipation term is also modeled, typically in a form

� =
C�k

3

2

l1
(4:25)

Two distinct one-equation approaches are particularly relevant to transi-
tional 
ows.

The Norris and Reynolds Approach

The Norris and Reynolds [29] model was developed in the early 1970's and
then largely left unused until Rodi and his co-workers [30] at the University of
Karlsruhe began using the model as part of a two-layer model. More details of
the two-layer model will be discussed in the context of two-equation models.

The version of the Norris and Reynolds model that is used by the Karl-

sruhe group [30] is derived from the basic de�nitions for eddy viscosity (equ.
(4.22)) and turbulent kinetic energy (equ. (4.23)) with the gradient-di�usion
approximation for the pressure-velocity and triple-velocity correlations (equ.
(4.24)). For consistency with the log layer, the constant c� in equation (4.22)

is the square of twice the structure parameter 2a = �u0v0=k. For turbulent
boundary layers in local equilibrium, experiments suggest that 2a = 0:3;

hence, c� = 0:09. The constant �k in equation (4.24) is 1:0. The length scale

l1 varies linearly in the log-law region of the boundary layer (i.e., l1 = cly).
As in the Cebeci-Smith model, a near-wall (or perhaps more accurately, a low
Reynolds number) damping is applied to the length scale. Di�erent damping

functions are used for �t and �, so that

�t = ���t = c���k
1

2 l� (4:26)
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is the eddy viscosity and

� =
k

3

2

l�
(4:27)

is the dissipation, where

l� = l1

"
1 � exp
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and

l� =
l1�

1 + 5:3
Ry

� (4:29)

are the damped length scales. The wall-normal Reynolds number

Ry � k
1

2y

�
(4:30)

often appears in low Reynolds number damping functions. For conformity
with the log-law layer, cl = �c�3=4� where � is the von Karman constant.
The Karlsruhe group chooses A� = 50:5 and A+ = 25. Rodi [31] points out
that the l� distribution is not in agreement with the DNS data very near the
wall; however, this disagreement is unlikely to cause di�culties in computing

quantities of engineering interest. Unlike many more complicated models,
this model performs well under adverse pressure gradients [32].

The McDonald and Fish Route

In the early 1970's, McDonald and Fish [33] modi�ed the one-equation model
of McDonald and Camarata [34]. In both works the turbulent kinetic energy

was integrated across the boundary layer; this integration eliminated the need

to model the pressure-velocity and triple-velocity correlations and simpli�ed

the solution procedure. Algebraic models were developed for the remaining
correlations. The structure parameter a was tuned for transitional 
ow. The

model simulated the transition process in a variety of cases; the best compar-
isons to speci�c experiments occurred when the values used by the authors

for free-stream turbulence and wall roughness di�ered from those values given

by the experimenters. Shamroth and McDonald [35] made some adjustments

to adapt the model for use in hypersonic boundary layers. Sometimes the

agreement with experimental data was good and sometimes not. The modern
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importance of this model is largely due to the recent resurrections of various

aspects of the methodology.

Mavrantonakis and Grundmann [36] use many of the same closure as-

sumptions as McDonald and Fish [33]; however, the di�erential (rather than

integrated) form of the k equation is employed. The typical gradient-di�usion

model (equation (4.24) with �k = 1) is used for the pressure-velocity and

triple-velocity correlations. When the de�nition of the structure coe�cient

is used, the eddy viscosity is

�t = ��l�

q
2aDk (4:31)

where the subscript D indicates streamwise damping. This use is consistent
with equation (4.22) if l1 = l�cl=� and cl and c� are de�ned the same way as
they were de�ned in the Norris and Reynolds approach.

The mixing-length variation across the boundary layer is adapted from
McDonald and Camarata [34] as
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where the last expression in the brackets damps the length scale in the sub-

layer. Here y+ = yu�=� where u� is the friction velocity and

AD =
26 (l�)e
0:085�

(4:33)

The streamwise evolution of the length scale at the boundary-layer edge is

taken from Deyhle and Grundmann [37] as
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This expression must be solved iteratively.

Unlike other models that will be considered, � in this case represents the
true dissipation rate of k, which for incompressible 
ow can be written as
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In other models, the second term is combined with viscous work terms to

form �@2k=@xi@xi. For this particular model (and for other models in which

� is de�ned this way), the turbulent kinetic energy equation must be written
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The underlined term in equation (4.36) must also be modeled. Deyhle and
Grundmann [37] account for this extra term, although the term is omitted
in the more recent work of Mavrantonakis and Grundmann [36]. In either
case, the two terms that make up � are modeled separately as
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where

f� = 1 � exp (�0:01189Ry ) (4:39)

is a low Reynolds number damping of the dissipation, nj is the wall-normal
unit vector, and l�D is the streamwise damped dissipation length scale. The
nondimensional dissipation length scale is the same as that used by McDonald
and Camarata [34], such that

l�

�
= 0:1 tanh

�
�y

0:1

�
(4:40)

Intuitively, the term �
h
@2
�
u0iu

0

k

�
=@xk@xi

i
in the dissipation should be mod-

eled the same way as the underlined term in equation (4.36); however, Deyhle
and Grundmann [37] model the two terms di�erently. Interestingly, Mavran-

tonakis and Grundmann [36] have traced some discrepancies in their skin-
friction predictions to the dissipation rate, although they have not associated

the problem with the inconsistency in their turbulent kinetic energy equation.

33



The transition process is largely accounted for by the streamwise damping

functions. The damped structure constant is

aD =

241:0 � exp

0@�c2
s
(l�)e
�

1A35 a (4:41)

and the damped dissipation length is

l�D =

241:0 � exp

0@�c1
s
(l�)e
�

1A35 l� (4:42)

where c1 and c2 depend on the free-stream turbulence level.
The model has been tested for 
at plate and adverse-pressure-gradient

boundary layers with Tu � 1:2% with a high degree of success; however, the
results were not as encouraging for a three-dimensional boundary-layer case.
A one-equation model is an e�cient design tool, but this particular model

needs further development with a more solid foundation for the dissipation
rate.

4.2.3 Two-Equation Models

In two-equation models, transport equations are solved for both the velocity
and length scales used to form the eddy viscosity. As in the one-equation
model, the turbulent kinetic energy is used almost universally to obtain the
velocity scale. A number of di�erent approaches exist to determine the length
scale. The most popular approach is to develop a transport equation for

the dissipation �, because � appears explicitly in the k equation anyway.
Various forms of the k � � model will be discussed below. An alternative

approach involves a transport equation for the turbulent time scale � so

that the turbulent length scale is proportional to k1=2� . Speziale, Abid, and
Anderson [38] have recently developed such a model; however, the model has

been tested on only a small group of 
ows. Yet another choice is to develop
a transport equation for !, which is proportional to the dissipation rate per

unit kinetic energy. E�orts to develop k�� and k�! models that are suitable
for transition are underway; this section will focus on some details of these

models for fully turbulent 
ow.

34



k � � Models

In this approach

l2 = f�
k

3

2

�
(4:43)

and the eddy viscosity can be written as

�t = ���t = ��c�k
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(4:44)

the function f� has been included in anticipation of the need for a low

Reynolds number damping function, as in the one-equation model. The
exact equation for � for incompressible 
ow is
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where the production of dissipation is
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the turbulent di�usion of dissipation is
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and the turbulent destruction of dissipation is
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The last three terms of the � equation need to be modeled. In the k

equation, the turbulent di�usion of kinetic energy is approximated by a

gradient-di�usion model. The same can be done for the turbulent di�usion

of dissipation, such that D� is approximated as
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where �� is a constant.

The production of dissipation is modeled as

P� = �c1f1
�
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j
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(4:50)

where c1 is a constant, and f1 is a damping function. To obtain this form,

the production of dissipation was assumed to be proportional to the pro-

duction of turbulent kinetic energy. Recently, Speziale [39] showed that the

same expression for P� can be obtained by the less stringent assumption that
the production of dissipation is governed by the level of anisotropy in the
Reynolds stress tensor and the mean-velocity gradients. The leading order
term in a Taylor-series expansion for small turbulent anisotropies and short
turbulent time scales leads to equation (4.50).

Dimensional analysis suggests that the destruction of dissipation should

be modeled as

�� = c2f2
�2

k
(4:51)

where c2 is a constant, and f2 is another damping function. Without any
damping functions, this expression is singular at a solid surface because k

(but not �) goes to zero.
The value of the dissipation at a solid surface is
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which is di�cult to handle numerically because the boundary condition de-
pends on the solution to the k equation. Several investigators get around

this numerical di�culty by splitting the dissipation (i.e. � = ~� +D where ~�
satis�es a homogeneous condition at the wall and D is a function that equals

the wall value of the dissipation and goes to zero away from the wall). Ad-
ditionally, an empirical source term E is sometimes added to the dissipation

equation to increase the dissipation in certain areas of the 
ow.

When all of the pieces are put together, the standard incompressible k��
model equations are

@k

@t
+ �ui

@k

@xi
=

36



� u0iu
0

j

@�ui

@xj
� �+

@

@xi

"�
� +

�t

�k

�
@k

@xi

#
(4:53)

@~�

@t
+ �ui

@~�

@xi
=

+ c1f1

�
~�

k

��
�u0iu0j

� @�ui
@xj

+
@

@xi

"�
� +

�t

��

�
@~�

@xi

#
� c2f2

~�2

k
+ E (4:54)

with:

� u0iu
0

j = �t

 
@�ui

@xj
+
@�uj

@xi

!
� 2

3
k�ij (4:55)

and

�t = c�f�
k2
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(4:56)

In a comprehensive overview of the early k��models, Launder and Spald-
ing [40] presented what have become fairly standard values for the various
constants: c� = 0:09, c1 = 1:44, c2 = 1:92, �k = 1:0, and �� = 1:3. The
constant c� was determined by the requirement for a constant stress region;
c1, by the value of the von Karman constant; c2, by comparison to experi-

mental results of the decay of grid turbulence; and �k and ��, by computer
optimization. Launder and Spalding [40] avoid low Reynolds number, near-
wall problems by not actually integrating the equations to the wall. Rather,
Launder and Spalding assume a functional form of the solution in the near-
wall region and match that with the solution at some point su�ciently far

from the wall where the near-wall e�ects are negligible.
Jones and Launder [41] addressed the low Reynolds number and near-wall

di�culties by using damping functions to multiply the standard values of c�
(which multiplies the eddy viscosity) and c2 (which multiplies the singular
term in the � equation). Jones and Launder chose

f� = exp

24� 2:5�
1 + RT

50
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35 (4:57)
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where the turbulent Reynolds number is RT = k2=(~��). They split the

dissipation � = ~�+D and used

D = 2�
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as well as a source term
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In the computed transition problem, transition occurred too abruptly at a
Reynolds number that was too low. A minor variation of the Jones and
Launder model was developed by Launder and Sharma [42], in which the
damping function f� was changed to

f� = exp

264� 3:4�
1 + RT

50

�2
375 (4:61)

This change improved the performance of the model dramatically.
Lam and Bremhorst [43] developed a di�erent set of wall functions to deal

with low Reynolds number e�ects in the k � � model. Their expression,

f� = [1� exp (�0:0165Ry)]
2
�
1 +

20:5

RT

�
(4:62)

was found by Patel, Rodi, and Scheuerer [44] to be a good approximation in

the viscous region; however, the choice of f2 = 1� exp(�R2
T ) did not lead to

the proper exponent for the �nal stages of decay of isotropic turbulence. The
function f1 = 1 + (0:05=f�)

3 increased the dissipation and hence decreased
the peak value of k in the near-wall region. The wall-boundary condition

on the dissipation was taken from the k equation at the boundary (i.e.,

�jy=0 = � (@2k=@y2) jy=0). Patel, Rodi, and Scheuerer [44] found that

@�

@y

�����
y=0

= 0 (4:63)

yielded almost identical results to those obtained with the use of the more

complicated boundary conditions. Rodi and Scheuerer [17, 45] used this sim-
pli�ed boundary condition in their transitional 
ow calculations and obtained
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reasonably good agreement with experimental measurements. However, like

Jones and Launder [41], they found that the transition region was often too

short.

In their two-layer model, Rodi and his coworkers [30, 31, 46, 47, 48] only

use the k� � model away from the wall region to avoid some of the near-wall

problems associated with the k � � model. Near the wall, the one-equation

model of Norris and Reynolds [29] is used. This approach reduces the need

for high resolution very near the wall, but is more empirical because the

length-scale distribution must be prescribed algebraically. In addition, the

two models must be matched at some distance from the wall. More details
of this model will be described later when transitional 
ow modi�cations are
discussed.

k � ! Models

As seen above, the � equation has two important di�culties: the lack of
natural boundary conditions for � at the wall and the singularity of the �2=k
term at the wall. Opportunities to resolve these problems are possible when

the equation is recast in a di�erent form.
Wilcox [49] reviews the history of k�! models from 1942 until 1991. For

the model that is discussed here, Wilcox [50] speci�cally assigns

! =
�

(��k)
(4:64)

where �� is a proportionality coe�cient. The modeled forms of the k equation
and ! equation are then written
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and
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with

�t =
��k

!
(4:67)

The coe�cients �k and �! are both set equal to 2. In the high Reynolds

number version of the model, � = 5=9, �� = 1, �� = 9=100, and � = 3=40.

According to Wilcox [49], even though the asymptotic behavior as y ! 0 is

not correct (u0v0 � y4 rather than u0v0 � y3), this model predicts the mean-


ow pro�les for adverse-pressure-gradient 
ows better than k � � models.

Wilcox [49] believes that the proper behavior in the defect layer is more

important than in the sublayer. Additional modi�cations for transitional

ow will be discussed later.

Summary of Two-Equation Turbulence Models

A limited sample of the rich variety of two-equation turbulence models is
o�ered above. Much of the diversity in these models is generated by the
low Reynolds number forms of k � � models. To sort through the numerous

possibilities, Patel, Rodi, and Scheuerer [44] evaluated eight di�erent two-
equation low Reynolds number turbulence models. The desired mathematical
properties of the models, as well as their actual performance on four carefully
chosen test cases, were discussed.

The low Reynolds number functions f�, f1, f2, D, and E are incorpo-

rated into the modeled equations for di�erent reasons. The reduction in the
shear stress by the function f� as the wall is approached is the result of two
independent phenomena: the direct action of molecular viscosity and the
near-wall in
uence on the 
uctuating pressure. The second phenomenon is
actually independent of viscosity and should not be correlated with RT , Ry,

or y+. However, because the separation of the two e�ects in the resulting

shear stress is di�cult, the e�ects are usually modeled together. Experi-
mental evidence suggests that f� should asymptote to unity by y+ = 60,
although all models tested asymptoted beyond this point. The functions

f1 and f2 control, respectively, the near-wall changes in the production and

destruction of �. The presence of f1 increases � in the vicinity of the wall.
The additional function E is used for a similar purpose. The presence of f2
is occasionally required to stabilize the numerical solution of the � equation
as k ! 0, in which case f2 / y2 near the wall. The use of an alternative

dissipation function ~� = � �D, where D 6= 0 (as in the Jones and Launder
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model), sometimes eliminates this di�culty (typically at the cost of intro-

ducing an accuracy problem right near the wall, because ~� usually varies

much more rapidly than � in the wall region). The function f2 is based on

an experimentally observed change in the decay law of isotropic turbulence

from k / x�1:25 to k / x�2:5 as the turbulence intensity RT decreases. The

e�ect of f2 should be restricted to low RT (typically RT < 15).

The computations performed by Patel, Rodi, and Scheuerer [44] revealed

that some models did not produce results consistent with experiments even

for the zero-pressure-gradient test case. An analysis of the near-wall behavior

of several turbulence quantities suggested that the constants and damping
functions used in those models (Hassid-Poreh [51], Ho�man [52], Dutoya-
Michard [53], and Reynolds [54]) restricted their generality. The models of
Launder and Sharma [42], Chien [55], Lam and Bremhorst [43], and Wilcox

and Rubesin [56] performed much better, although even these needed im-
provement. Patel, Rodi, and Scheuerer suggested that

1. The damping function f� be chosen to agree with available experimen-
tal data and its e�ects restricted to the sublayer and bu�er zones.

2. The functions f1 and f2 in the dissipation-rate equation should be

mathematically consistent with the required near-wall behavior.

3. All functions and constants should be �ne-tuned to reproduce the basic

features of wall-bounded shear 
ows in a variety of pressure gradients.

Finally, Patel, Rodi, and Scheuerer [44] note that modi�cations to the
high Reynolds number versions of most models will be required to handle

adverse-pressure-gradient 
ows.

4.3 Reynolds Stress Transport Turbulence

Models

Most two-equation models have trouble with stagnation 
ows because the
turbulent energy production is dominated by the normal, rather than the
shear stresses, and the normal stresses are typically not calculated properly

with an isotropic eddy-viscosity model. In addition, two-equation models

do not consider the e�ects of curvature and rotation (and body forces in
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general) on the turbulence structure, which creates the need for a higher

level of modeling.

The Reynolds stress transport (RST) models are also known as Reynolds

stress closures, second-order closures, and second-moment closures. The term

Reynolds stress transport will be used here. These models do not assume an

eddy viscosity, but rather use transport equations for all of the terms of the

Reynolds stress tensor. For incompressible 
ows
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where the production of turbulent stress is
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the pressure-strain correlation is

�ij � p0
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the dissipation-rate correlation is

�ij � 2�
@u0i
@xk
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@xk
(4:71)

and the turbulent-stress-di�usion correlation is

Cijk � u0iu
0

ju
0

k + p0u0i�jk + p0u0j�ik (4:72)

As an example of an RST closure, the model presented by Savill [57] will

be considered. The model contains many features of the model developed

by Kebede, Launder, and Younis [58]. As is often done, a gradient-di�usion
hypothesis is used to model the turbulent di�usion of turbulent stress

Cijk = �csk
�
u0ku

0
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(4:73)
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Note that this choice is not symmetricwith respect to an interchange of either

i or j with k. Launder and Shima [59] use the same approximation for this

term and point out that the choice is made for computational convenience

rather than accuracy. Because of the relative unimportance of di�usive trans-

port, Launder and Shima [59] maintain that the errors are unlikely to have

a signi�cant e�ect. The modeled dissipation-rate correlation is

�ij = �

"
2

3
�ij (1� fs) +

Ffs

k

�
u0iu

0

j + u0iu
0

knknj + u0ju
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(4:74)
where

fs =
1

1 + RT

10

(4:75)

is a function that goes to one with low turbulence Reynolds numbers and
goes to zero with high turbulence Reynolds numbers. The function

F =
1

1 + 2:5
u

02

2

k

(4:76)

ensures that the tensor contracts properly. The long expression, multipled
by fsF , yields the proper limiting behavior as the wall is approached. The
pressure-strain correlation is modeled with four terms:

�ij = �ij1 +�w
ij1 +�ij2 +�w

ij2 (4:77)

Here,

�ij1 = �c1�aij (4:78)

where aij = (u0iu
0

j � 2=3�ijk)=k is the anisotropic part of the Reynolds stress
and

�ij2 = �c2
�
Pij � 1

3
�ijPkk

�
(4:79)

models the fully turbulent portion of the pressure strain. The wall functions

�w
ij1 and �w

ij2 are only important near solid boundaries, where they redis-

tribute velocity 
uctuations from those normal to the wall to those parallel
to the wall. These functions are modeled as

�w
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and

�w
ij2 = cw2

�
�km2nknm�ij � 3

2
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2
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�
f (4:81)

where the near-wall damping function is f = k3=2=(�x2) with x2 equal to the

distance to the wall. The recommended constants are c1 = 1:8; c2 = 0:6;

cw1 = 0:5; and cw2 = 0:3: The dissipation-rate equation used is
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and wall damping functions
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An additional source term for dissipation is included. This source term ac-
counts for the third term on the right side of equation (4.46) and takes the
form
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where the damping function f� is the same as that used in the Launder and
Sharma [42] near-wall k � � model:

f� = exp

264� 3:4�
1 + RT

50

�2
375 (4:87)

The constants used are c� = 0:15, c�1 = 1:275, c�2 = 1:8, and c�3 = 0:25. Some

constants and functions have been developed with thought to the physics,
or at least the statistics, of turbulent 
ows; however, many are ad hoc and
have been optimized by comparisons of mean-
ow features of computer cal-

culations with speci�c experimental results. Therefore, the generality of the

model is somewhat questionable. However, this model performs well for
transitional 
ows and is discussed in Chapter 6.
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4.4 Large-Eddy Simulation

In large-eddy simulation, the large-scale quantities are de�ned by a �ltering

operation

f = �f + f 0 (4:88)

where
f(x; t) =

Z
f(x�; t)G(x;x�)dx� (4:89)

The integral is extended over the entire spatial domain, and G is a �lter

function. Unlike the RANS equations, the overbar here represents the time-

dependent large scales of motion rather than a time average or an ensemble
mean. Primed quantities denote a SGS component of the 
ow. For the
incompressible isenthalpic case, the �lter applied to the Navier-Stokes equa-
tions (equ. (4.1)) and the continuity equation (equ. (4.2)) yields the �ltered
equations
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and
@�ui

@xi
= 0 (4:91)

where a reference length and velocity have been used to nondimensionalize
all quantities and produce the Reynolds number. The SGS stress

�ij � uiuj � ui uj (4:92)

is not known and must be modeled. Note that although the large-eddy

equations of motion look much like the Reynolds-averaged equations, the

meaning is di�erent. In the Reynolds-averaged equations, the computed

mean quantities are a time average or an ensemble average. In either case,
all of the turbulent motion is buried in the Reynolds stress. However, in

LES, the averages are spatial averages where the modeled parts are those
motions that occur on scales that are too small to be resolved on the grid. In

a properly performed LES, all important temporal variations in the 
ow are

explicitly calculated, this includes the evolution of the turbulent motion (i.e.,

the large eddies). Traditional thinking assumes that the SGS features simply

transfer energy to higher wave numbers where the energy can be dissipated.
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A common approach is to employ an eddy-viscosity model for the small scales

so that the modeled SGS stress can be written as

�ij = �2�tSij + 2

3
�ijksgs (4:93)

where ksgs is the SGS kinetic energy and Sij is the large-scale strain-rate

tensor. A Smagorinsky [60] model is typically used for the eddy viscosity to

yield

�t = Cs�
2 �S (4:94)

where �S =
q
2 �Sij �Sij, � is a length scale which is the geometric mean of

the grid spacings in the three coordinate directions, and Cs is the square
of the usual Smagorinsky coe�cient. Although Cs has traditionally been
taken as a constant, no necessity exists for it to be constant, nor must it

be positive everywhere as was the original Smagorinsky constant. In fact,
recent DNS work done by Piomelli, Cabot, Moin, and Lee [61] suggests that
energy transfer from the subgrid scales to the large scales occurs at nearly as
many grid points as does energy transfer from the large scales to the subgrid
scales. Of course, for any statistically steady turbulent 
ow, the net energy

transfer must be from the large scales to the subgrid scales; however, the
energy transfer can also be in the opposite direction. This phenomenon is
known as backscatter. Germano, Piomelli, Moin and Cabot [62] used this
insight to develop the \dynamic subgrid scale model" for LES. In this model,
two �ltering operators are used:

f (x) =
Z
f(x0)G(x;x0)dx0 (4:95)

where G is the grid �lter, and

~f (x) =
Z
f(x0) ~G(x;x0)dx0 (4:96)

where ~G is the test �lter. All integrations are performed over the entire

computational domain. The test �lter corresponds to a coarser mesh than

the grid �lter. The combination �lter ~�G = ~G �G also can be applied to the

original equations of motion. This application results in an equation similar
to the one that describes the large eddies; however, the overbar terms now

have an additional tilde on top and the SGS stress is now written as

Tij = guiuj � ~�ui ~�uj (4:97)
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The smallest of the resolved stresses are represented by

Lij = g�ui�uj � ~�ui ~�uj (4:98)

which can also be written as

Lij = Tij � ~�ij (4:99)

When a Smagorinsky model is used for both Tij and �ij , the anisotropic parts

of Tij and �ij are

Tij � (
�ij

3
)Tkk �Mij = �2Cs

~��
2~�S ~�Sij (4:100)

and

�ij � (
�ij

3
)�kk � mij = �2Cs

��2 �S �Sij (4:101)

where ~�� and � are the �lter widths associated with ~�G and �G, respectively.

When equation (4.99) is contracted with �Sij and the modeled expressions are
used,

Lij
�Sij = �2Cs

�
~��
2~�S ~�Sij �Sij ��

2 g�S �Sij �Sij� (4:102)

is obtained, which can be solved for the Smagorinsky coe�cient Cs. How-
ever, because the quantity in parentheses can become zero, in practice Cs is
assumed to be a function only of the wall-normal distance and time. Planar
averages are used for the terms in the parentheses. This model has been used

with some success in both fully turbulent and transitional 
ows.
The model has been extended to compressible 
ow by Moin, Squires,

Cabot, and Lee [63]. The density must be included in the stress tensors, and

an SGS heat-
ux vector

_qk = �ukT � (
1

��
)�uk�T (4:103)

is modeled in much the same way as the SGS stress.

Another formulation of the model has been proposed by Lilly [64] in which
the tensor Lij is contracted with Mij instead of �Sij . A positive-de�nite ex-

pression is ensured for the poorly behaved term in equation (4.102); however,
tests show that despite its positive de�niteness, the term remains ill-behaved.

As a result, spatial averages are still employed.

47



Chapter 5

Transition-Region Models

5.1 Linear-Combination Transition-Region

Models

In a linear-combination transition-region model, estimates of turbulent 
ow-
�eld quantities are linearly combined with estimates of the corresponding
laminar 
ow-�eld quantities. The proportion of each of these estimates is

determined by the intermittency of the 
ow. For example,

�ui = (1� 
) (�ui)lam + 
 (�ui)t (5:1)

where the subscripts lam and t indicate the estimate for the laminar and
turbulent 
ows, respectively.

This kind of transition model can be traced to Emmons [65] and his clas-
sic work on turbulent spots. Dhawan and Narasimha [66] later discovered

that the intermittency distribution in constant-pressure transitional bound-

ary layers could be correlated by the expression


 = 1 � exp

"
�0:411

�
x� xt0

�

�2#
(5:2)

where � is the streamwise distance between the points at which 
 = 0:25

and 
 = 0:75, and xt0 is the location where the intermittency �rst becomes
nonzero. However, the values of xt0 and � varied within individual experi-

ments so that the correlation alone could not be used to predict transition.

48



Chen and Thyson [67] proposed a di�erent intermittency distribution to ac-

count for pressure gradient and compressibility e�ects, although Narasimha

[68] later claimed that this formulation was not well supported by experi-

mental data. Instead, Narasimha [69] and Dey and Narasimha [70] proposed

that subtransitions, or breaks in the usual Dhawan and Narasimha [66] cor-

relation exist in 
ows with strong pressure gradients. Dey and Narasimha

[18] used the subtransition concept to correlate 
ows with pressure gradients

by combining two sets of transition start and end locations.

To develop a useful model, both xt0 and � must be known. In the linear-

combination model proposed by Dey and Narasimha [18] the starting location
of transition must be determined by some other means (e.g., an eN method)
and empirical correlations must be used to determine �. (See also reference
[71] for a concise summary and additional references.)

The point xt0 is the origin of the turbulent boundary layer. The unknown
distance � is obtained from

� =

"
0:411

Re3�(xt2)

N2

# 1

2 �

Ue(xt2)
(5:3)

where � is the kinematic viscosity at the edge of the boundary layer, Ue(xt2)
is the boundary-layer-edge velocity at xt2, and Re� is the Reynolds number

based on laminar momentum thickness at the point xt2. For mild pressure
gradients, xt2 = xt0. For stronger pressure gradients, xt2 must be determined
from the intermittency distribution. Because no correlation exists for �nding
xt2, xt2 = xt0 is used to predict the intermittency distribution with this
model. The factor N2 is a nondimensional turbulent-spot formation rate and
is determined from the correlation

N2 = N0(M; q) + 0:24L2
t2 (Lt2 > 0) (5:4)

or
N2 = N0(M; q)� 323:0L3

t2 (Lt2 < 0) (5:5)

where N0 = 0:7�10�3 for incompressible 
ows with a free-stream turbulence
level Tu greater than 0:2%, and Lt2 is a pressure-gradient parameter that is
equal to dUe=dx �2lam=�. Both the free-stream velocity gradient dUe=dx and

the laminar momentum thickness �lam are measured at xt2. For compressible


ows, the Mach number correction to N0 given by Narasimha [68] is used.
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Very low free-stream turbulence levels require a modi�ed value of N0. The

modi�cation

N0 = �1:453 � 10�3 log (Tu)� 1:61 � 10�3 (Tu < 0:2%) (5:6)

results when a curve is �tted to the data in Figure 5.10 of Dey and Narasimha

[18].

5.2 Algebraic Transition-Region Models

In algebraic models, the mean 
ow is calculated from a set of averaged equa-

tions in which the e�ective viscosity �e� is equal to the sum of the molecular
viscosity � and the product of a transition function 
t and a turbulent eddy
viscosity �t, such that

�e� = � + 
t �t (5:7)

The turbulent eddy viscosity �t may be determined from any type of turbu-

lent eddy-viscosity model. The transition function 
t is not the intermittency
of the 
ow, but an empirically determined expression that indicates the ap-
propriate fraction of the fully turbulent eddy viscosity. For purposes here,
assume that the appropriate starting location for transition has been deter-
mined by some other means. The model must determine the value of 
t.

One model, developed at ONERA/CERT, uses a correlating parameter that
depends on the momentum thickness of the 
ow and the Mach number at
the edge of the boundary layer [72, 73, 24]. Speci�cally,

�1 =
�
�t0
� 1 + 0:005M2

e

1 + 0:02M2
e

(5:8)

where �t0 is the momentum thickness at the point where the model is started.
The expression for 
t is piecewise continuous in the streamwise direction and

is constant across the boundary layer. The algebraic expressions for 
t that

have been used in recent tests of this model [74, 28, 75] are given by Arnal
(private communication).

For 0 < �1 � 0:25,


t = 1 � exp
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�4:5
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e
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e
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(5:9)
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For 0:25 < �1 � 0:75,


t = 18:628�4
1 � 55:388�3

1 + 52:369�2
1 � 16:501�1 + 1:893 (5:10)

For 0:75 < �1 � 3,


t = 1:25 � 0:25 sin [� (0:444�1 � 0:833)] (5:11)

For �1 > 3,


t = 1 (5:12)

Note that the transition function exceeds unity for part of the region so
cannot represent the true intermittency of the 
ow.

Data of low-speed 
ows with zero and mildly adverse pressure gradients
were used to develop the ONERA/CERT model. This model works quite
well in predicting the length of the transition region for these 
ows [28, 74].

As with all linear-combination and algebraic transition-region models, no
absolute criterion exists for determining the location at which the model is
initiated. For comparison with experimental data, Singer, Dinavahi, and Iyer
[28] and Singer, Dinavahi and Zang [74] initiated the transition-region model
at an x-Reynolds number approximately equal to 91% of the x-Reynolds
number that corresponds to a local minimum in a surface quantity (e.g., skin

friction or heat 
ux). The choice of this x-Reynolds number was based on
posteriori optimization in the case of Singer, Dinavahi, and Zang [74] and
based on a suggestion by Dey and Narasimha [18] for the Singer, Dinavahi,
and Iyer report [28]. Although this guideline for the initiation position gen-
erally leads to reasonable answers, it is not foolproof. In �gure 2 the ON-

ERA/CERT model is used with three di�erent starting locations, and the

results are compared to the experimental �ndings of Kimmel (personal com-
munication) for the 
ow over a cold-wall cone at a Mach number of 8. The
91% guideline corresponds to Rt0 = 2:3�106. The model's performance here

is not encouraging; however, if the third and �fth experimental data points

were in error (a reasonable assumption), then the curve with Rt0 = 3:0� 106

would be appropriate. Note that in this curve, the maximum Stanton num-
ber has been reduced, and the model and experimental results agree better.
Finally, when the model is started further downstream with Rt0 = 3:6� 106,

the resulting curve is the closest to the experimental data in the transition

zone. In a practical application of the model, the experimental data would
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not be available to optimize the starting location. Singer, Dinavahi, and

Zang [74] show that an eN approach with 9 < N < 10 provides appropriate

starting locations for supersonic 
ight-test data, although the margin of error

is large (perhaps from 15 to 20% discrepancies in the optimal choice of Rt0).

A serious problem with the ONERA/CERT model occurs with strong

favorable pressure gradients, where the momentum thickness decreases with

streamwise distance. In these cases, the model can fail to transition properly.

For example, consider �gure 3, which is plotted with data from reference [28]

and digitized data from reference [46]. This 
ow involved a strong favorable

pressure gradient with a free-stream turbulence level of about 2%. (See Blair
and Werle [76] for experimental details.) The chain-dashed line illustrates
the Stanton number distribution for this 
ow when the two-layer model of
Fujisawa, Rodi, and Sch�onung [46] is used. This model will be discussed later.

The dashed line (concealed by the solid line in the laminar region) represents
the results from the linear-combination model of Dey and Narasimha. (See
previous section.) The solid line is the Stanton number computed with the
ONERA/CERT algebraic model. The laminar momentum thickness in this

ow began to decrease slightly upstream of the Stanton number minimum.

Although the transition model was initiated, the decreasing laminar mo-
mentum thickness prevented any turbulent eddy viscosity from being added;
hence, the calculated 
ow remained laminar throughout the test section.

5.3 Di�erential Transition-Region Models

Turbulence models have been used to model the transition region for several

decades. Donaldson [77] solved a form of RST equations (he solved for three
normal stresses and �xy) for transitional 
ows. He computed the onset and
evolution of transitional 
ow and performed many computations that demon-

strated the e�ects of various model constants, starting locations, and initial

pro�les; however, he did not present comparisons with speci�c experiments.
Launder and Spalding [40] reported the results of some k� � calculations

by Priddin [78] in which the transitional 
ow over a turbine blade at vari-
ous levels of free-stream turbulence was accurately calculated. Launder and

Spalding [40] suggested that \the low Reynolds number form of the k � �

model has its own built-in `transition criterion.' "
A somewhat di�erent view has evolved since then. The transport equa-
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tions associated with turbulence models allow for the transport of free-stream

turbulence into a laminar boundary layer. When the level of free-stream tur-

bulence is su�ciently high, the rate of di�usion of this free-stream turbulence

into the boundary layer can exceed its dissipation rate. At some point, the

turbulence model production mechanisms respond to the free-stream tur-

bulence that has di�used into the boundary layer in the same way these

mechanisms would respond to genuine turbulence; a pseudotransition pro-

cess occurs, and the end result is a turbulent boundary layer.

The pseudotransition process is sensitive to a number of details in the

calculations, particularly the starting pro�les of various quantities (k and
�, where appropriate, or the Reynolds stresses for RST models) and the
streamwise position where the models are started. Detailed studies of the
physical processes of transition amid high levels of free-stream turbulence

have not yet established the relationship of the pseudotransition in the models
to the true physical processes. The suggestion that the models simulate the
physical transition process (even in the case of high free-stream turbulence)
is premature, if not completely incorrect. The fact that reasonable results
are obtained in some cases from models that are not explicitly designed for

transitional 
ow is largely fortuitous.
Schmidt and Patankar [79] performed extensive tests with the k� � mod-

els of Jones and Launder [41] and Lam and Bremhorst [43] to determine the
suitability of the models for simulating boundary-layer transition. Schmidt
and Patankar [79] contend that low Reynolds number k � � models can re-

produce some qualitative aspects of boundary-layer transition because of the
weak correspondence between a developing laminar boundary layer and the
viscous sublayer, the transitional 
ow region and the bu�er layer, and the

fully turbulent boundary layer and the \law of the wall" region. After the
models were tested, the authors concluded that

1. The predicted starting location of transition is moderately sensitive to

initial pro�les for k and � and the location at which the calculations
begin. This sensitivity will be discussed in more detail later.

2. Basic qualitative aspects of transition are correct (i.e., the higher the

turbulence level, the earlier transition begins); however, when the calcu-

lations start early so that sensitivity to the starting location and pro�les
decreases, transition is consistently predicted unrealistically early.
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3. The transition lengths are signi�cantly shorter than those found in

experiments.

These conclusions are consistent with the �ndings of other modelers [80, 45].

In addition to the problems identi�ed thus far, Rodi [30] indicates that the

models only undergo transition with high (> 1%) free-stream turbulence

levels. The low free-stream turbulence case must be dealt with in a di�erent

way.

This section covers models in which the transport equations have been

altered to speci�cally account for the transition process. Most of these mod-
i�cations are empirical; hence, they can be applied only to the regime for
which the empirical correlations have been formulated.

One set of experiments performed by Abu-Ghannam and Shaw [81] in

incompressible 
ow with pressure gradients and free-stream turbulence is
commonly used to calibrate the models. Abu-Ghannam and Shaw [81] corre-
lated the beginning and ending transition Reynolds numbers for many 
ows
and presented these correlations:

Re�s = 163 + exp

�
F (��)

�
1� Tu

6:91

��
(5:13)

for the start of transition and

Re�e = 540 + 183:5
�
RL � 10�5 � 1:5

�
(1� 1:4 � ��) (5:14)

for the end of transition. In these expressions, �� = (�2=�)dUe=dx, and RL

is a length Reynolds number given by

RL = 16:8(Rexs)
0:8 (5:15)

where Rexs is the x-Reynolds number of the start of transition. The function

F (��) is given by

F (��) = 6:91 + 12:75�� + 63:64�2� (�� � 0) (5:16)

and

F (��) = 6:91 + 2:48�� � 12:27�2� (�� > 0) (5:17)

The beginning and ending Reynolds numbers from the Abu-Ghannam and
Shaw [81] experiments were determined by measurements with a single, �xed

probe and varying free-stream conditions.
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5.3.1 The Two-Layer k � � Model

Chapter 4 brie
y described the two-layer approach of Rodi [31] in which a

standard k � � model was used for the bulk of the 
ow, and a version of

the Norris and Reynolds [29] one-equation model was used for the near-wall

region. The parameter A+, which is used in the damping of the turbulence

transport length scale, is used to control the transition process. Thus,

A+ = A+
t +

�
300 �A+

t

� �
1 � sin

�
�

2

Re� �Re�s

Re�s

��3
(5:18)

Here A+
t is the fully turbulent value and Re�s is the momentum-thickness

Reynolds number at the start of transition (as determined by the correlation
of Abu-Ghannam and Shaw [81]). The transitional value of A+ only is used
when Re�s < Re� < 2Re�s. For the limited number of cases checked, the

agreement is satisfactory.
Fujisawa, Rodi, and Sch�onung [46] modify the form of A+ so that the em-

pirical relation includes both the beginning and ending transition Reynolds
numbers.

A+ = A+
t +

�
300 �A+

t

� �
1 � sin

�
�

2

Re� �Re�s

Re�e �Re�s

��3
(5:19)

where Re�s and Re�e are the Reynolds numbers associated with the start
and end of transition (as determined by the Abu-Ghannam and Shaw [81]
correlations). Fujisawa, Rodi, and Sch�onung [46] also use a di�erent matching

condition. The one- and two-equation models match where

y+ = 6:1A+

s
u2�
k

(5:20)

The computed results compare reasonably well with the results from sev-

eral experiments, even with those from the strong acceleration case of Blair

and Werle. [76] (See �gure 3.) This particular result is surprising because
A+ is based on momentum thickness and the laminar momentum thickness
decreases near the minimum Stanton number in the experiments. A careful

review of this result reveals that, for this case, the good agreement is acciden-

tal; the Abu-Ghannam and Shaw correlation predicts the onset of transition
upstream of the minimum Stanton number (Re� � 300 from correlation;
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Re� � 365 at minimum Stanton number). This fortuitous occurrence ini-

tiates the turbulence model su�ciently far upstream where the momentum

thickness is still increasing. Enough turbulence is generated that the momen-

tum thickness never decreases. In some other case, the gods of transition and

turbulence might not smile so brightly; this model has as much potential for

failure as the ONERA/CERT model.

Rodi, Liu, and Sch�onung [48], and more recently Cho, Liu, Rodi, and

Sch�onung [47], have adapted versions of the two-layer model for application

to wake-induced unsteady 
ow by using the model in a Lagrangean way.

Unsteady boundary conditions that correspond to the wake-perturbed 
ow
�eld are used at the upstream end of the domain. Fluid elements near the
boundary-layer edge are tracked and the local growth of Re� is monitored and
compared with the theoretical Res for the pressure-gradient and free-stream

turbulence parameters in that location at that time. When Re� �rst exceeds
the local Res, that value of Res is frozen and used in the determination of
A+ for all downstream locations of that 
uid element. With this model,
the predicted 
ow quantities agree well with experiment over most of the
surface. However, discrepancies occur with the turbulence intensities near

the leading edge of the turbine blades because the boundary layer is quite
thin in this area. This discrepancy at the leading edge does not result in
problems further downstream.

5.3.2 Schmidt and Patankar k � � Model

Based on the knowledge gained from their comparative study, Schmidt and
Patankar [82] discuss a k��model that gives reasonably accurate indications
of the starting point and extent of transition in a number of 
ows. Their
modi�cations �t into the general scheme of low Reynolds number k��models

and satisfy two additional requirements:

1. A well-de�ned region exists where starting pro�les can be speci�ed with

minimal sensitivity.

2. The transition predictions determined starting and ending locations

that agree well with the Abu-Ghannam and Shaw [81] correlations.

Schmidt and Patankar's [82] speci�c modi�cations are tailored to the Lam

and Bremhorst [43] low Reynolds number form of the k�� model. Instead of
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modeling the turbulent kinetic-energy production term Pk = �u0iu
0

j (@�ui=@xj)

with the standard eddy-viscosity approximation, Schmidt and Patankar [82]

also constrain how fast the production term can grow and, consequently,

the rate at which transition proceeds. Without understanding the detailed

processes, they are able to meet their second objective with an empirical

formulation where
dPkmax

dt
= B1Pk +B2 (5:21)

in which B1 and B2 are empirical parameters. They require that Pk = 0

where the momentum-thickness Reynolds number is below a critical value. Of
course, the applicability of the model is limited to those cases for which their
value of the critical momentum thickness is appropriate, although even with

no production of k inside the boundary layer, kinetic energy can be convected
into the boundary layer from the free stream. Schmidt and Patankar also
modify the eddy-viscosity damping function f� so that it never exceeds unity
(it never should). This change allows the k � � model to simulate transition
with free-stream turbulence levels less than 1%. The coe�cients B1 and B2

are determined by numerical optimization over a wide range of turbulence
intensities from 0:5% to 10%.

Schmidt and Patankar's [82] new model is insensitive to the starting loca-
tion when the initial x-Reynolds number is less than 1000. For these initial
starting locations, the solution is also insensitive to the starting pro�les.

The calculation results are compared with the results of 16 separate experi-
ments that were performed by three di�erent experimenters for a variety of
free-stream turbulence levels and pressure gradients. For the high free-stream
turbulence cases of Blair and Werle [76], Schmidt and Patankar [82] predicted
transition somewhat earlier than actually occurred in the experiments. The

model agrees much better with the data of Rued [83]. Satisfactory agreement

is also obtained with the turbine-blade experiments of Daniels [84]. Because

this model, like the Rodi models [31, 46, 48, 47], is triggered by an Re� con-
dition, it can also fail if the laminar momentum thickness decreases before

the turbulence model takes e�ect.

5.3.3 Wilcox k � ! Model

Wilcox [85] modi�ed his k � ! model to account for low Reynolds number
and transitional-
ow e�ects. As with Schmidt and Patankar [79, 82], the
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modi�cations delay the onset of transition and extend the length of the tran-

sition region. In Wilcox's model, the constants in the standard version of the

k � ! model are functions of the turbulent Reynolds number RT = k=(!�).

In the high Reynolds number version, �� = 1; the newer version uses

�� =
��0 +

RT

Rk

1 + RT

Rk

(5:22)

with ��0 = �=3 and Rk = 6. As the turbulent Reynolds number gets large,

�� goes to its high Reynolds number value. Similarly, �, which was equal
to 5=9, now goes asymptotically to that value; however, for lower turbulent
Reynolds numbers, � is

� =
5

9
� 1
��
� �0 +

RT

Rw

1 + RT

Rw

(5:23)

where Rw = 2:7. The constant � retains its value of 3=40 while

�� =
9

100
�

5
18
+
�
RT

R�

�4
1 +

�
RT

R�

�4 (5:24)

with R� = 8. The three constants R�, Rw, and Rk control the rate at
which the closure coe�cients approach their high Reynolds number values.
Their values are the result of computer optimization and comparison with

turbulent sublayer statistics. The model has been tested for transitional

ow of an incompressible 
uid over a 
at plate. The starting locations of
transition as a function of free-stream turbulence intensity agree reasonably

well with the data of Dryden [86], although some sensitivity to the free-
stream value of ! exists. The extent of the transition region as a function

of the starting location of transition gives a satisfactory match with Dhawan
and Narasimha's data [66]. The free-stream value of ! apparently does not

a�ect the transition-region length.

5.3.4 LES Models for Transition

Piomelli and Zang [87] and Zang and Piomelli [88] tested several SGS mod-
els for LES of transitional 
ow. They found that the standard Smagorin-

sky type of model was overly dissipative, but that transitional phenomena
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could be adequately captured using an intermittency function which varied

as (Hl�H)=(Hl�Ht). Here, H is the shape factor and the subscripts l and

t refer the laminar and fully turbulent values, respectively. Another SGS

model that is based on renormalization group theory was also used. The

SGS stresses were essentially zero in the linear and early nonlinear stages of

transition. The model captured most of the physical features of transition,

but the quantitative results were very grid dependent. The formulation of

the dynamic Smagorinsky SGS model by Germano et al. [62], which was

described earlier was also used. This model, which allows for backscatter,

gave the best predictions of mean-
ow quantities of the transitional 
ow.
Quite recently, El-Hady, Zang, and Piomelli [89] performed LES calcula-

tions of a Mach 4.5 transitional boundary layer along a hollow cylinder using
both the Germano et al. [62] and Lilly [64] formulations of the dynamic

Smagorinsky SGS model. This work is ongoing, but preliminary results in-
dicate that both formulations work well. Comparisons with the results of
the direct numerical simulations performed by Pruett and Zang [90] on the
same geometry indicate that the version of the dynamic Smagorinsky model
suggested by Lilly [64] is somewhat more accurate than the original version

by Germano et al. [62].

5.3.5 Questions Regarding Model Initiation

As noted earlier, linear-combination and algebraic models are sensitive to the

choice of transition starting location. A similar problem arises with di�er-
ential transition-region models, although, in this case, the problem involves
the speci�cation of initial turbulence pro�les. In the past, variations in the
starting locations and initial pro�les for the turbulent statistics were not well

documented. The same model could produce vastly di�erent results for the

same basic 
ow conditions; the di�erences were dependent upon the details of
the initial conditions. Rodi and Scheuerer [45, 80] reduced the confusion by

introducing initial pro�le functions that satis�ed some basic constraints on k
and �. According to Rodi and Scheuerer [80], the pro�le for k vanishes at the

wall, increases quadratically with distance from the wall, and asymptotes to

the free-stream value. Their expression that meets this criteria is

k = ke

�
U

Ue

�2
(5:25)

59



Fewer constraints must be imposed on the � pro�le. In the free stream, �

must go to its free-stream value; Rodi and Scheuerer [45, 80] argue that the

length scale k3=2=� inside the boundary layer should not exceed the length

scale in the free stream. They assume that the initial dissipation rate is

proportional to the production rate of k so that

� = a1k

 
@U

@y

!
(� > �e) (5:26)

where a1 is a function of the free-stream turbulence level. Rodi and Scheuerer's
[45, 80] calculations start with Re� < 100, where they claim that the 
ow is
still stable and laminar. Schmidt and Patankar [79, 82] use similar pro�les,
although they take a1 to be constant (a1 = 0:1). Schmidt and Patankar
[79, 82] also begin their calculations earlier; their results were insensitive
to the initial pro�les of k and � when Re� � 25. Abid [91] reports that

predictions are independent of starting pro�les for most k � � models when
Rex < 1000. Abid [91] indicated that the Launder and Sharma model [42]
had the more stringent starting requirement (Rex < 100) in order to be
independent of initial pro�les. For 
ow over a 
at plate, these Rex values
correspond to Re� = 21 and Re� = 6:6, respectively. In all studies that report

di�erent sensitivities, the results are more sensitive to the initial � pro�les
than to the initial k pro�les. Starting pro�les for RST models have not been
extensively explored; however, Savill [92] indicated that his results do not
depend strongly on the normal stress distribution, but are sensitive to the
assumed � pro�le. The e�ects of starting conditions have not been explored

with LES models. However, the sensitivity of the transition process to the
initial disturbance �eld has been documented with DNS [93, 94]; hence this

sensitivity will likely to be a problem for LES.

5.4 Unconventional Approaches

In this section, I will outline some novel ideas that have been proposed,

but are not currently in vogue. Some of these ideas, for good reasons, will
probably never be useful; others, with some work, could hold some promise

in the future.
The renormalization group (RNG) theory of Yakhot and Orszag [95] sug-

gested that many di�erent levels of turbulence models, and even transition
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models, could be obtained in a straightforward manner. Unfortunately, the

algebraic RNG model for transition simulation that was studied by Lund

[96] produced discontinuities in the turbulent eddy viscosity. Although the

qualitative behavior of the model was correct, oscillations in the solutions

cast doubts about the reliability of the model for 
ows more complex than


at-plate boundary layers. The RNG-based SGS model for LES performed

somewhat better [97], largely because the model was inactive for much of

the calculation. In more recent calculations, the results are very grid sen-

sitive [88]. This bleak picture for RNG-based models may change in the

future. Smith and Reynolds [98] found an algebraic error in the derivation of
the skewness and identi�ed several problems in the derivation of the energy-
dissipation-rate equation. Future models with alternative derivations may
prove more useful than their predecessors.

Young, Warren, Harris, and Hassan [99] modeled transition for the in-
compressible 
ow over a 
at plate with low levels of free-stream turbulence.
They explicitly included the e�ects of Tollmien-Schlichting (TS) waves by
modifying the eddy-viscosity length scale. The new length scale incorporates
TS wavelength information for a fraction (1� 
) of the time. Unfortunately,

in the true physical scenario, no true TS waves remain in the 
ow when

 6= 0, although relics of their length scale may still exist. Young et al. also
adjusted the equations to account for the large scales in the 
ow that were
neither laminar nor turbulent. Both of these corrections had little e�ect on
the shear stress, but had a large e�ect on the turbulent intensities.

Vancoillie and Dick [100] developed an incomplete model in which the ef-
fects of the intermittency of turbulent spots were incorporated directly into
the k and � equations. Conditional averaging was used so that the laminar

and turbulent portions of the 
ow could be time-averaged (or ensemble-
averaged) separately; the number of continuity and momentum equations to

be solved was doubled, at least in the transitional-
ow regime. Gradients of
the intermittency appeared in the equations. Dhawan and Narasimha's [66]

intermittency distribution was used, and the starting and ending locations of
transition were assumed known. To date, this method has limited practical

value. Vancoillie and Dick [100] computed boundary layers that corresponded
to the experiments of Schubauer and Klebano� [101], Juillen and Arnal [102],

and Blair and Werle [76]. The results showed good agreement with experi-

ment, particularly when the transition region was long when compared with
the length of the boundary layer. Where the transition region was short, as
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in the case of strong adverse pressure gradients, Vancoillie and Dick's [100]

method did not perform well as it did for zero-pressure gradients.
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Chapter 6

Evaluation of Transition

Models

An appropriate transition model should be easy to use, computationally
inexpensive, and likely to provide accurate results for all conceivable
transitional 
ow situations. The degree of emphasis placed each of the words
in bold-faced type is largely an individual choice. After these choices have
been made, adequate information about the possible models must be ob-

tained. The remainder of this chapter explores sources of information for
selecting a model when the priorities have been established.

6.1 A Systematic Method

Singer and Dinavahi [75] proposed a strategy for testing transitional 
ow

models. Because they were model users rather than developers, Singer and

Dinavahi [75] avoided a priori biases regarding whether the models would
run successfully. Rather, they identi�ed the test problems and emphasized
the procedure for handling diverse 
ow types with multiple examples. Specif-

ically, they suggested

1. identify the major 
ow types for which the model will be used,

2. �nd appropriate experiments that illustrate the important physics, and

3. compare the model predictions with the experimental data.
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For example, Singer and Dinavahi [75] considered the requirements for a

transition-region model to calculate 
ows over high-speed aerodynamic vehi-

cles. An easy and inexpensive algebraic turbulence model was used, which

limited them to linear-combination and algebraic transition-region models.

Singer and Dinavahi [75] selected a form of the Dey and Narasimha model [18]

(linear-combination) and a model developed at ONERA/CERT [72, 73, 24]

(algebraic).

They assumed that some other method could be used to determine the

start of transition; the model needed to predict only the 
ow in the transition

region. Seven types of transitional 
ows were identi�ed that could conceiv-
ably be important for a high-speed aerodynamic vehicle. These test 
ows
included two-dimensional incompressible constant-pressure boundary layers;
boundary layers with pressure gradients; supersonic 
ows; 
ows with free-

stream turbulence; 
ows with rough surfaces; 
ows with streamline curva-
ture; and three-dimensional boundary layers. This list might seem extensive;
however, it is by no means complete. A gas-turbine application would prob-
ably include transition in a boundary layer with mass injection and possibly
transition in separation bubbles. A combustor application would require

chemically reacting 
ows and free-shear layers. The list could continue; how-
ever, Singer and Dinavahi [75] emphasize the responsibility of the user to
identify the relevant physical phenomena that will in
uence the transition
process for the speci�c application.

In the next step, experiments that illustrated transition in the selected

situations were chosen. Numerous criteria for the choice of experimental data
were discussed. For example, some quantity that can be related to both the
beginning and the end of transition must be measured. Ideally, measurements

throughout the transition region were desired; however, the locations of the
beginning and end of transition (determined by some well-de�ned criteria)

were acceptable. Singer and Dinavahi [75] stressed simple geometries for two
reasons: to minimize extraneous e�ects that might in
uence the transition

process and to avoid the numerical di�culties associated with constructing
complicated grids and solving the relevant equations on those grids. Finally,

Singer and Dinavahi [75] noted that transition experiments are often sensitive
to 
ow details that are not explicitly measured, such as very small scale

surface roughness near the leading edge and the free-stream turbulence length

scale and spectrum. The uncertainty in these quantities is typically not
re
ected in the experimental uncertainty of the measurements. Singer and
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Dinavahi [75] also urged the use of multiple experiments for the same 
ow

type, preferably performed in di�erent facilities. The larger the data set, the

less likely that overly general conclusions will be drawn. Unfortunately, they

did not always follow their own advice; some 
ow types were not represented

by a suitable diversity of experiments. This problem is being addressed with

an extension to the database.

The models were used to predict the mean-
ow in the test cases. When

the intermittency was provided by the experimenters, an extrapolation ofq
� log (1� 
) to zero provided the point at which the models were initiated.

When intermittency was not provided (the usual case), the models were
initiated at a streamwise position that corresponded to 91% of the distance to

the local minimum of some mean-
ow property (e.g., skin-friction coe�cient,
Stanton number, surface pitot-tube pressure, etc.). The use of strict criteria
for the starting positions of the models eliminated the subjective adjustments
that many modelers have used to make their results correspond better. (For
example, see reference [33], where the surface roughness was varied to better

�t the data; reference [35], where free-stream turbulence levels were varied;
and reference [103], where the starting location of transition was optimized on
a case-by-case basis. Many other cases exist in which a similar optimization is
suspected; the authors of the above references were careful enough to report
what was done.)

A total of 24 test cases were run; the results were reported in reference
[28] and were made available electronically to other modelers.

The extensive testing illustrated some important points.

1. The ONERA/CERT model can fail to predict any transition for a
strong favorable-pressure-gradient case. (See �g. 3.) This failure to pre-
dict transition has been traced to the fact that the momentumthickness

in the laminar boundary layer begins to decrease just before the model

is initiated. Any model of the transition region that depends on an

essentially monotonic increase of the momentum thickness through the

transition zone (e.g., the transitional-
ow correction to the two-layer
model developed at Karlsruhe) is subject to this problem.

2. Linear-combination models cannot be used on 
ows for which the lam-

inar 
ow would have separated, even if the transitional 
ow remains

attached, because the laminar 
ow through the transition region is re-
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quired to construct the appropriate linear combination.

3. The initiation of a turbulent boundary layer with zero boundary-layer

thickness (as is required by linear-combination models) along a three-

dimensional front that is not perpendicular to the streamlines is di�-

cult. Without a clean method for performing this computation, linear-

combination models in strongly three-dimensional 
ows are not practi-

cal.

4. Not surprisingly, the transitional-
ow results depend on the turbulence
model used.

5. Appropriate methods for initiating the transitional-
ow model should
be developed.

6. High levels of free-stream turbulence can in
uence the laminar 
ow
before a transition-region model is initiated. This in
uence may not be

a problem for models that solve a transport equation for the turbulence;
however, algebraic and linear-combination models do not show any
e�ect of the free-stream turbulence before transition begins.

After the testing was completed, Singer and Dinavahi [75] felt that a
single transition-region model was not appropriate for all 
ows considered
and suggested a \conglomerate model" that employs several submodels (or

di�erent coe�cients for the same basic model). Each of these submodels
would be optimized for a particular category of 
ows and selected by an
experienced user (or perhaps an expert-system program).

6.2 The T3 Test-Case Project

The Europeon Research Community on Flow Turbulence and Combustion
(ERCOFTAC) Special Interest Group (SIG) on transition and retransition

has established a program for the assessment of turbulence models for en-

gineering applications. The project is coordinated by Dr. A. M. Savill, a
Rolls-Royce Senior Research Associate in the Engineering Department of

the University of Cambridge in England. Savill outlines the program and
summarizes the early results in reference [92]. More recent results have been

reported in references [104] and [57].
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Test cases T3A-, T3A, T3B, and T3C correspond to experiments per-

formed at the Rolls Royce Applied Science Laboratory by Roach and Brier-

ley [104, 105] to investigate the e�ects of isotropic free-stream turbulence on

transition in zero-pressure-gradient boundary layers (cases T3A-, T3A, T3B)

and in a favorable-to-adverse pressure-gradient boundary layer (case T3C).

As additional experiments are performed, the number of test cases will be

increased. (Unpublished data by Niew and Gaster of Cambridge University

are being used to specify a case of transition following laminar separation

[104].) Stow, Birch, Price, Roach, Brierley, and Cholerton of Rolls Royce

(See reference [104].) prepare the speci�cations for the test cases. Typ-
ical test case speci�cations include velocity, turbulent kinetic energy, and
dissipation-length-scale distributions in the free stream. The more recent
experiments also include boundary-layer pro�les of streamwise mean and

perturbation velocities at a speci�ed streamwise location on the 
at plate.
Suggested dissipation pro�les are also provided. Participants in the program
are requested to provide plots of the skin-friction coe�cient Cf and the shape
factor H against logRex and x.

The �rst report [92] includes 16 di�erent sets of results, which were pro-

vided by nine research groups. No standard for numerical accuracy was
imposed; each research group provided results that they felt were adequately
resolved. In spite of the inclusion of a suggested Reynolds stress pro�le in
the original speci�cation, some investigators used a di�erent pro�le instead
of or in addition to the speci�ed one. The conclusions indicate that the initial

Reynolds stress pro�les are not particularly important to the results; the re-
sults are more sensitive to the initial dissipation-rate pro�les. Computation
times were not always reported, but the available data suggest that these

times varied from a few minutes on a VAX or IBM mainframe (typical of
parabolic schemes) to hundreds of hours on a CRAY X-MP for a DNS. Only

cases T3A and T3B were included in the initial report. Some highlights from
the results are discussed below.

A DNS performed by Yang and Voke [106] closely matched the experi-
mental data for skin friction and shape factor even though the grid resolution

(255� 32� 16) was extremely coarse for a turbulence calculation. The LES
performed by Mortenssen, Eriksson, and Albraten [107] using a standard

Smagorinsky model without special transitional-
ow treatment did not un-

dergo transition. However, the recent dynamic-scale Smagorinsky models
described in Section 5.3.4 were not tested for this 
ow; these models may
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predict mean-
ow properties as well as the DNS. Savill [108] used an RST

model with various low Reynolds number closures. Only the Launder-Sharma

low Reynolds number closure (see Section 4.3) underwent transition in both

test cases; in both cases, this closure performed well. For two-equation mod-

els, those that used the Launder-Sharma low Reynolds number closure per-

formed better than other models. Although this closure is asymptotically

correct for � and u0v0 in turbulent 
ows, the fact that it depends primarily

on RT = k2=(��) is probably more important because RT does not depend

directly on the the distance from the wall (unlike Ry or y+). Other mod-

els that perform well in fully turbulent 
ow might do better for transitional

ow if they were reformulated with RT rather than Ry dependencies. The
k � � models were surprisingly insensitive to the initial k pro�le, but were
very sensitive to the initial � distributions. In most two-equation models,

the skin-friction peak was not correctly predicted and the transition length
was too short. Many of these observations were concurrently observed by
Schmidt and Patankar [79]. Unfortunately, the Schmidt and Patankar model
[82] was not included in the assessment program.

Subsequent reports of this program have included additional results from

original contributors and new participants. The number of 
ow cases has also
increased. The new T3C case with a favorable-to-adverse pressure gradient
is certainly important to the gas-turbine industry, although from a model-
ing viewpoint an examination of separate favorable- and adverse-pressure-
gradient cases may have been more enlightening.

The lack of strict deadlines in the program has allowed for continuous
input from the participants. Unfortunately, this lack of deadlines also means
that a complete, well-documented synthesis of the data is di�cult to obtain.

Similarly, case speci�cations can only be obtained from Dr. Savill or from the
other participants. As some of these di�culties are overcome, this program

promises to become a great source of information on the performance of
various transition models, particularly in those 
ows that are relevant to the

gas-turbine industry.
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6.3 All Data Are NOT Equal{Some Notes

on the Use of Experimental Data

Transitional-
ow data have often presented the research community with

paradoxes and apparent inconsistencies. Most of the time, the problem is

not a glaring mistake, but a surprisingly strong in
uence by some 
ow quan-

tity (usually not measured) on the 
ow. In this section, I discuss a personal

experience with seemingly disparate data taken from a much acclaimed ex-

periment.
The ONERA/CERT algebraic transition-region model was to be evalu-

ated for supersonic 
ow over a cone in very low-disturbance environments.
I selected eight cases from the 
ight experiments of Fisher and Dougherty
[109]; four of these cases had edge Mach numbers from 1.44 to 1.47. For these
four cases, I was interested in testing for strong unit Reynolds number e�ects
in the 
ight experiments. Pate [110] illustrated strong unit Reynolds number

e�ects in noisy wind tunnels and even in some ballistic-range data. Would
these e�ects also be noticeable in 
ight tests? By luck, I found two cases from
this group that had nearly identical unit Reynolds numbers. The predicted
results for the two cases were essentially the same. The experimental results
showed something di�erent.

Detailed data from Flight 339 at time 13:13 and Flight 335 at 13:53 as
reported in reference [109] are shown in table 6.1. The notation in the table
is the same as that used in reference [109]; the nominal mean 
ow is charac-
terized by the Mach number at the edge of the boundary layer Me, the unit
Reynolds number Re1, the total temperature TT , and the dynamic pressure

q1. For all of these quantities, the di�erences between the two cases are
less than 5%. The free-stream turbulence is described by the ratio of the

root-mean-square total-pressure 
uctuations
q
p02T to the dynamic pressure.

Here, the di�erence between the two cases is about 7.5%. The pitch � and

yaw � angles (in degrees) di�er in the two cases. The two cases also di�er
in how closely the wall temperature approximated the adiabatic wall con-

dition Tw=Taw = 1:0. The Reynolds number at the start of transition Ret0
and the Reynolds number at the end of transition ReT0 correspond to the

axial distance along the cone at which minimum and maximum surface pitot

pressures were measured. The transition Reynolds numbers reported were
already corrected (through empirical correlations) to account for the small
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Flight Me Re1 TT Tw=Taw q1
q
p02T =q1 � � Ret0 ReT0

339 1.44 11:04 317.3 1.023 34:14 2:30� 10�4 -0.07 -0.08 7:20 8:06

335 1.46 10:94 324.3 1.041 35:58 2:49� 10�4 -0.10 -0.07 7:57 9:23

Table 6.1: Two 
ight cases from Fisher and Dougherty [109]. The unit

Reynolds number Re1 is in units of 1=m, the total temperature TT is in

degrees Kelvin, the dynamic pressure q1 is in units of KN=m2, and the

pitch � and yaw � angles are in degrees. All of the Reynolds numbers Re1,

Ret0, and ReT0 have been multiplied by 10�6.

deviations from adiabatic wall temperatures and nonzero incidence angles.

Even without the corrections, the small di�erences measured in the two 
ight
environments in no way suggest the di�erence of nearly a factor of 2 in the
length of the transition region (ReT0 � Ret0), particularly when both cases
start transition at nearly the same Reynolds number. Which data point
should be used to calibrate a model? Which should be used to report re-

sults? Singer, Dinavahi, and Zang [74] found that the ONERA/CERT model
performed well for the second case and poorly for the �rst case. If the ex-
periment did not measure (or did not report) one of these data points, how
much faith can be put in the other point?

The Fisher and Dougherty 
ight experiments are considered high-quality

work and remain an excellent source of data. With a traditional measure
of transition-region length ReT0=Ret0, the ratios for the two cases are 1.12
and 1.22. The factor-of-2 di�erence in the length of the transition region
does not appear so dramatic here, in particular because ratios from 1.1 to
more than 2.0 have been found on the same cone in a variety of wind tunnels
with the use of the same instrumentation and approximately the same Mach

number (See �gure 26 in reference [111].). The point is that a single case is

not a su�cient basis for either model calibration or evaluation. Many more
test cases are needed to assess the consistency of data and to determine the

ability of the model to predict trends.
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Chapter 7

Summary and Author's Views

This report began with experts' opinions of transitional-
ow modeling. To
understand modeling problems, various 
ow features that in
uence the tran-
sition process were discussed such as pressure gradients, compressibility, free-

stream turbulence, surface roughness, streamline curvature, and mean-
ow
three-dimensionality. Various types of transition-region models were exam-
ined in table 3.1; rows of table 3.1 showed the level of modeling used for the
turbulent 
ow and columns showed the level of modeling for the transition
region. Di�erent approaches to transition-region modeling require the use of

di�erent turbulence models. In later chapters some of the di�erent models
were explored in detail. The eddy-viscosity models involved the calculation
of a turbulent eddy viscosity that is added to the molecular viscosity to cal-
culate the mean 
ow. Determination of the eddy viscosity requires algebraic
relationships or the solution of additional transport equations for various tur-

bulence quantities (e.g., turbulent kinetic energy and turbulent length scale);

these solutions are then combined to form an eddy viscosity. The RST models
require the solution of separate equations for each of the turbulent stresses.
In the LES approach, the SGS stresses must be modeled and the large-scale

turbulent motions are computed. Modi�cations to these models to account

for transitional 
ow often require additional empirical input. Finally, model

assessment and the use of experimental data were discussed in the previ-

ous chapter. Throughout the text, I have tried to give a balanced view of
the issues. The reader should now have su�cient knowledge to make his or

her own judgments, so I will take this opportunity to o�er my own opinions
regarding transition-region models.
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The simplest type of model that can simulate the mean-
ow properties of

a 
ow throughout the transition region for a reasonably large class of 
ows is

LES. Only LES (after DNS) can track the temporal evolution of 
ow distur-

bances and preserves the frequency content of the free-stream disturbances,

which is vital to the transitional process. No model that averages away this

information truly simulates transition. Obviously, the LES approach is not a

viable option for most scientists and engineers who need to know something

about a particular transitional 
ow. What would I do in this case?

As rule of thumb, I restrict the level of transition-region model to no

higher than needed to adequately describe the fully turbulent 
ow. The ar-
gument that higher order models include more physics of the 
ow and so
should provide more reliable results is inappropriate for most transitional

ows. Because transitional-
ow physics is time-dependent, Reynolds averag-

ing can smear the critical aspects of the physics. The only situations in which
the transitional 
ow results may be improved (more than the fully turbulent
results) by the use of higher order models are those that have high levels of
free-stream turbulence because the free-stream turbulence can in
uence the
laminar 
ow. In these cases, algebraic turbulence models might do well in

the fully turbulent regime; however, a model that transports the turbulence
into the boundary layer can improve the results for the nominally laminar

ow before transition begins in earnest.

Turbulence models that are speci�cally modi�ed to handle transitional

ows can provide better results than models without any modi�cation. Sim-

ply rewriting low Reynolds number closures in terms of RT instead of Ry

or y+ is unlikely to produce high quality models for transitional 
ows. This
approach might work well in many cases; however, it also will not work well

in many cases. No guidelines exist to help the user distinguish between these
cases a priori. I prefer to use models that have been closed with empirical

information from transitional 
ows similar to those that will be computed.
A variety of di�erent closures, based on experiments for di�erent kinds of

transitional 
ow (similar to the conglomerate model mentioned in reference
[75]), can be used wisely to great bene�t. If a 
ow must be computed for

which no relevant experimental information exists, then much larger errors
should be expected.

Perhaps the most important lesson is never to believe a transitional 
ow

prediction simply because it came out of a computer. If the answers do not
conform with notions of how similar 
ows behave, then question what went
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into the calculation and examine the expected accuracy of the result. I hope

that this work has provided the necessary knowledge to facilitate the asking

of the right questions.
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ow. The ONERA/CERT model was used with di�erent starting positions.

Experimental data from Kimmel (personal communications).
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